Document Number: X3J16/92-0082, WG21/N0159

Date: 9/20/92
Project: Programming Language C++
Ref Doc: X3J16/92-0042, WG21/N0119
Reply To: Michael J. Vilot
ObjectCraft, Inc.
Nashua NH 03063 USA
mjvéobjects.mv.com

Report from the Library working group
Work done March —July 1992

This report summarizes the progress made by the Library working group between the London and
Toronto meetings, and the work done at the Toronto meeting. Section 1 of the report provides details of the
progress between the meetings. Section 2 provides details of the activities at the latter meeting. The final
Section 3 concludes with a summary of work planned for the next meeting.

The main body of the report concentrates on the key discussions and consensus reached by the Library
working group. Appendices contain the details. Appendix A lists the open issues the working group is
actively pursuing. Appendix B lists the pending items that have been identified, but not yet pursued.
Appendix C records the decisions on which the working group has reached consensus.

1. Progress Between the Meetings

Working group members volunteered to complete each of the work items identified at the last meeting.
The results of most of these activities are documents, usually in the form of a propsal to the full X3J16
committee. Discussions on the x3§16-1ib electronic mail reflector provide feedback and comment on the
work items, as well as raise new issues.

Due to the increasing size and activity of the C++ community, suggestions for the standard C++ library
sometimes come from outside X3J16 circles. Some of these other activities are described here.

Documents

The documents produced by working group members are intended to become proposals to X3J16 for
inclusion into the Working Paper. Most have been in preparation for several meetings, undergoing revision
after obtaining feedback from working group meetings and elsewhere.

17.1_ Language Support
Mike Vilot provided a revised proposal, which clarifed the semantics of program-supplied operator

new() and operator delete() functions, as well as the new-handler, unexpected, and terminate functions
(92-0043/N0120). ’

Jerry Schwarz provided an analysis of exceptions and operator new, including a summary of existing
implementations (92-0058/N0135).

17.2 _String

Uwe Steinmiiller provided a revised proposal that ix_i(_:luded the results of discussions at the London
meeting (92-0045/N0122).

173 Input/Output

Jerry Schwarz provided version 4 of the proposal, including initial support for wechar_t types (92—
0059/N0136).

17.4 _1SO C Library

Thomas Plum and P.J. Plauger proposed adopting a standard definition for localedef files, along the
lines of the version described in Plauger’s book The Standard C Library (92-0049/N0126).

Philippe Gautron submitted a proposal from AFNOR, requesting an official ISO group to synchronize the
evolution of the C and C++ libraries (92-0069/N0146). .

17.5_ Containers

Chuck Allison provided a revised bitset proposal (92-0051/N0128).
Use Steinmiiller provided a revised dynarray (92-0046/N0123).

131

X3J16/92-0082, WG21/N0159
9/20/92

Electronic Mail
Comments directed at x3j16~1ibéredbone.att.com and archived there represent the “conversation”

among Library working group members between meetings. Comments this time focused on evolving
proposals.

String class
Uwe Steinmiiller posted his revised strings proposals, including code for an implementation, and
received several comments. (x3j16-1ib-275, 276, 288, 291, 293, 294)

Bits classes
Chuck Allison posted his revised bits and bit_string classes. (x3j16-1ib-277)

operator new() behavior
Jerry Schwarz requested additional information to complete his survey of the behavior of existing

implementations of operator new(), and received several replies. (x3j16-1ib-278, 279, 280, 281, 282,
283)

thread safety
Aron Insinga raised the issue of whether static objects in the C++ library inhibited thread-safe
implementations. (x3j16-1ib-284, 285, 286, 287)

1SO C Library synchronization
Tom Plum posted Philippe Gautron’s request to form an official ISO committee to synchronize the
development of the C and C++ libraries. Jerry Schwarz replied. (x3j16-1ib-289, 290)

Environment (argv/arge) access
Steven Parkes posted a request for a standard way to access the environment variables, including access
from constructors of static objects. Steve Clamage replied with a good description of the issues that made it

difficult or impossible to satisfy the request under the current language rules (due to indeterminate static
initialization order). (x3j16-1ib-295, 296, 297)

Other Discussions

P.J. Plauger presented a talk entitled “C and C++ Libraries” at the C Plus C++ at Work conference,
Secaucus NJ, April 92. In it, he deseribed his view of what the design criteria should be for the standard
C++ library, as well as its contents.

The design criteria included: '

* Alibrary used by all C++ (and C) programmers should favor efficiency over doctrinal purity.
* It should encompass the functionality most likely to become common in C within the next few
years.
* It should include a number of middle-level classes as a bridge between C and C++ programming
styles. a
* It should include just those high-level classes most likely to be widely used.
* There should be no surprising performance overheads.
* Most important, it should be tried out before it's been standardized.
The contents included:
* The Standard C library
* plus float and long double math functions and the WG14 additions for large character sets
* plus overloaded names for the math and (wide) character classification functions
* language-support functions
* stream classes, including multibyte support
* string, bitstring, and container classes
¢ a family of complex classes

An upcoming book from Prentice-Hall, due out in early 1993, will contain an implementation of this
library.

132 i

X3J16/92-0082, WG21/N0159
' 9/20/92

2 Activity at the Meeting '

The discussion at each meeting generally follows the topics outlined for the Library portion of the
Working Paper. Some subgroups have been formed to work in parallel with the rest of the working group
(such as for strings and iostreams).

This section of the report summarizes the key discussions, issues raised, and decisions reached during
the week.

General .

The Library working group is making progress, refining proposals to the point where they can be
submitted for a vote by X3J16 and W21. The adoption of the proposal to include the C library (92—
0024R1/N0101) at the London meeting freed up some resources to devote to the other proposals.

Much of the group’s discussion focused on the Language Support proposal. A separate sub-group
discussed the strings proposal. The groups discussed National Language Set issues for both strings and
iostreams, at both meetings.

17.1 Language Support

The two issues that received the most attention in this proposal were the wording and the decision to
change the default behavior of the implementation-supplied new-handler.

The wording changes focused on providing clear and unambiguous specifications of each function. This
turned out to be difficult, because the functions operator new() and operator delete() can be replaced
by arbitrary functions in a C++ program. Similarly, arbitrary functions can be installed as a new-handler,
terminate-function , or unexpected-function .

P.J. Plauger and Dan Saks rewrote the proposal, and exposed a deeper conceptual issue. Their
background with C encouraged them to use the word “object” for the result of operator new(), while C++
makes a sharp distinction between an “object” and its storage. This exposed the fact that the Working Paper
has no vocabulary of concepts for describing storage and its management. This makes it difficult to express
the intended operation and constraints on any program-supplied version of operator new() and operator
delete(), and the intended side-effects of a new-handler function.

The following diagram illustrates this interaction, as well as the effect of having a new-handler throw an
exception:

xalloc, or 0

new, delete

. xalloc
"storage” ™~ "
» new handler ——J» exit(),

abort()

The figure helped clarify the discussion. The group decided not to pursue a rigorous definition of
“storage,” and turned to the implications of exceptions thrown by the default new-handler.

Jerry Schwarz discussed the issues in document 92-0058/N0135. The Library working group discussed
his analysis, and decided to adopt his suggestion (2), leaving the possibility that a new-expression could
return null as undefined behavior. Arkady Rabinov of Apple pointed out that this was crucial for supporting
the transition from existing code to the proposed semantics.

133

X3J16/92-0082, WG21/N0159
9/20/92

In the discussion before the full X3J16 committee, Martin O'Riordan of Microsoft raised the most vocal
criticism of the proposed change. The key point of his argument was an insistence upon standardizing
existing practice.

Clearly, this change breaks all existing implementations. Since existing implementations do not support
exceptions, they do not throw exceptions upon running out of storage. The decision involves a value
judgement: is the existing practice of returning null to indicate failure worth replacing with exceptions, the
language’s own error reporting mechanism?

The following code examples helped clarify the discussion:

(1) erroneous program never checks
T* p =0;
P =new T; // might fail
*p; // error
(2) “careful” program, v.1: provide own checks and/or handling

extern void recover();
set_new_handler(recover);
P = new T;
*p H
(3) “careful” program, v. 2: checks for null, but not exception
P = new T;
assert(p):;
*Pi

(4) “careful” program, v. 3: checks for exception, but not for null
try { ’
P = new T;
} catch (xalloc& x)
// recover & goto retry, return, or call exit/abort
}
*p ;

The main question is whether there is more extant code of type (1) than of type (3). The former will be
“fixed,” in the sense that they will now terminate in a well-defined way rather than by their erroneous
behavior. The latter will be “broken,” in the sense that their checks will not catch the exceptions. The sense
of the Library working group, voiced by Jerry Schwarz, is that there is far more code of type (1) than of any
other type. This change would therefore be helping to expose latent defects, in much the same manner as
type-safe linkage did.

Type (2) programs continue to work because their installed new-kandlers do not throw exceptions, and
type (4) programs are, we assume, not yet prevalent. But.a secondary question is whether the style of type
(4) programs is desirable or “in the spirit of C++.” Jan Gray of Microsoft raised the point that defining the
semantics to throw an exception means a C++ program must bear the costs of the exception mechanism even
if it never uses exceptions itself. This is probably a specious argument, since all conforming
implementations will have to provide the language feature anyway, but it does illustrate the concern.

The final resolution was to endorse the design of having the the implementation provide a default new-
handler that throws an xalloc exception if it cannot free storage. Existing behavior could be re-established
trivially with a C++ program that calls set_new_handler(0) to unset the default new-khandler, and

returning null from a new-expression would be allowed as undefined behavior for just such backward
compatibility.

172 String

Much of the critique of this proposal centered on internationalization concerns. Greg Colvin wondered if
the generality of allowing a NUL character (0x00) at arbitrary string locations was worth the added
complexity and performance degradation. Jerry Schwarz wanted to remove the dependency on a single,

global locale setting, in favor of per-string settings. These discussions revealed a number of design decisions
that had to be made for string class design. :

134

X3J16/92-0082, WG21/N0159
9/20/92

P.J. Plauger’s suggestion for “a modest set of string classes” in his C Plus C++ at Work presentation .
provided a key insight for the Library working group. By organizing the analysis of string operations around
the following table (originally sketched out at the March meeting in London), the group was able to see that
the existing string class proposal was focusing on too many aspects of the problem simultaneously:

representation existing class |
individual bit unsigned, bits,
operators bit_string
bytes mem*() string
chars str*(), string
(counted) strm*Q string
w/locales collate, xfrm string
wchar_t wstr*(), wstring
wer()
multi-byte mb*() (encode/decode)

The group decided to revise the proposal, with several string classes (each focused on a specific aspect of
representation) and well-defined conversions among them. Jerry Schwarz expressed his opinion that the key
concern for each class was encapsulating the details of storage management.

Tom Plum proposed having the string classes use the “most appropriate” representation for the locale.
After discussing the idea, the group proposed a class text as a “higher level” string. The basic string classes
would each concentrate on the most effective implementation of one kind of character sequence. The text

objects could choose one of the other kinds of strings for their representation, based on the characteristics
Tom had described.

17.3 Input/Output

Revision 4 of the iostreams proposal included most of the results of discussions at the London meeting.
Most of the changes related to support for wide characters.

Documents 92-0039/N0116, from Tatsunori Hashimoto, and 92-0080/N0157, from Norihiro Kumagai,

helped clearly illustrate the design impact of wide characters and their multibyte encodings. The Library
working group was able to discuss the various propesed designs.
The following diagram helped illustrate the discussion:

setlocale()

not wchar_t

|

stream - streaml_.)'uf‘; 8-bit "octet"
locale char \ 16+ bit ?
operator << 4d A Y
operator >> 7 '
char / '
int 7 ': .
wchar_t ! : *

14
o ee 4

fstreambuf strstreambuf

135

X3J16/92-0082, WG21/N0159
9/20/92

There are really three separate issues:
1. How to support locales when formatting streams
2. How and where to encode/decode wide characters to/from multibyte representation

3. Whether/how to support “direct mode” transfers between internal wide characters and external
wide (i.e. non-multibyte) representations.

The goal is to provide facilities to make NLS streams as convenient as ASCII streams:

istream in(“ ... ”);
string s;
in >> s; // current ASCII behavior (will be locale-sensitive)

wstring w;
in >> w; // do the right thing (decode)

. istream wide(“ ... ”); // might have 64-bit characters
wide >> w; // “direct mode”

Jerry Schwarz reiterated the design concepts behind iostreams. The stream classes are responsible for
formatting, while streambuf classes manage consumption, buffering, and production of (char) character
buffers.

The group agreed that locale processing belonged in the stream classes. The main question was how to
design the “right” behavior: should all streams use a single, global locale setting (as in the C library), or
should they each have their own? The conclusion was to do both: the default was for each stream to have no
locale setting enabled. Any stream in such a state would look to the global locale setting. A program can
explicitly set a stream to a specific locale setting.

In this way, C++ programs can reflect C program behavior (/O with global locale state), but also support
multiple locales in the same program (not possible in C).

Jerry also maintained that streambufs should retain their char buffer design. The difficult design issue
was how to support seeking to arbitrary positions, if such a position lands in the middle of a multibyte
sequence involving shift states. Accounting for shift states and file positions complicates the streampos
and streamoff “types.”

Simply throwing an exception for an invalid positioning request might be the simplest alternative.

Supporting “direct mode” transfers (wchar_t <—> non-MSE external) would not be supported by char-
based streambufs. It may be possible to define a wehar_t-based streambuf to support such a mode.

174 ISO CLibrary

The AFNOR request to create a group to synchronize the evolution of the C and C++ libraries was
discussed. The group’s consensus was that the C++ library will track the C library anyway, and the group
did not have the resources to spare on yet another committee.

P.J. Plauger requested the Library working group review the proposed normative addendum to ISO C.
The “penultimate” proposal would be available from the Japanese delegation to WG14 soon after WG21’s
Toronto meeting. Comments at the WG21 Boston meeting could be relayed to WG14’s December meeting.
Library working group members agreed to review the proposal for impact on the C++ library.

The localedef proposal was not discussed. .

175 Containers
Reviewing the bitset proposal encountered a Core Language issue regarding friends of template classes.

template<unsigned n>
class bits {
friend int operator==(const bits<n>&, const bits<n>&);
}:
// can’t define a template function using expression n

template <unsigned n>
int operator==(const bits<n>&, const bits<n>&);

136

X3J16/92-0082, WG21/N0159
9/20/92

// the legal alternative intrudes on the global name space
template<class T>

int operator==(const T&, const T&);

// and still requires a definition for each instantiation of bits

Basically, this is the same issue Philippe Gautron discussed in London (see: 92-0014/N0092, §4.1.2).

The dynarray proposal received some negative comments. The most serious was that the functionality
made little sense without an operator[] defined. Simply returning a reference to an element does not
distinguish between lvalue and rvalue uses, while providing an intermediate “helper” class seems inefficient.
dJerry Schwarz pointed out that standard classes might be optimized as a special case by an implementation.

The group did not reach a clear consensus on whether the proposal should be tabled or continued, but it
was clear that it needed more work.

3. Work Plan

The Library working group will continue to refine proposals for submission to the full X3J16/WG21
committee. By the next meeting, several documents should present proposals in almost-final form.

17 Library Introduction

Mike Vilot agreed to develop the wording for the introduction to the Library chapter, and to develop a
Rationale statement for the library.

17.1 Language Support
Mike Vilot agreed to revise the proposal.

17.2 String
Uwe Steinmiiller agreed to revise the stnngs proposal.
Pete Becker agreed to write up a proposal for class text.

17.3 Input/Output
Jerry Schwarz agreed to revise the proposal.

174 ISO CLibrary
All working group members agreed to review the MSE proposal, per P.J. Plauger’s request.

175 Containers
Chuck Allison agreed to revise the bitset proposal.

137

A. Open Issues

X3J16/92-0082, WG21/N0159
9/20/92

This appendix lists the issues the Library working group is actively trying to resolve. It also lists some
of the issues active in other working groups that are relevant to the Library portion of the Working Paper.

Other WG Issues

This section describes issues raised by
X3J16 working groups.

Editorial WG Issues

New expr. Jul92 92-0082/N0159

Core Lancuage WG Issues

Varargs Nov90 90-0109

Temps’ Lifetime Nov9l 7

New expr. Mar92 2

Templates Jul92 92-0082/N0159
Environment WG Issues

Startup Mar 92 92-0042/N0019
Static Init. Mar 90 90-0052,0062

138

the Library working group that should be addressed by other

§5.3 should be revised to guarantee that any exception thrown

by operator new() is propagated through the new
expression.

What is the effect of passing a C++ object with a constructor
to/from a C/C++ function with an ellipsis specifier as an
argument list?

Lifetime of temporaries needs to be specified, to allow implicit
conversion of strings to charx.

(Proposal: 92-0020/N0098]

What happens if an exception occurs in a constructor during
dynamic allocation?

eg. T* p = new T(args);

Does the memory remain allocated? Is the implementation
required to call operator delete() before propagating the
exception?

How does one specify the definition for friend functions of
templates that use only expression arguments?

e.g. template <int n> class bits {

friend int f(bits<n>&);

}i

Is it:
template <int n>
f(bits<n>&) { ... }

or:
template <class T>
£(T&) { ... }

[see: 92-0014/N0092, §4.1.2]

Need to define the point at which library functions become
available for use, including how the implementation uses
them. For example, operator new() and operator
delete() can be provided by the implementation (the default
versions), or replaced by a C++ program. Ifthe
implementation uses these functions for its own storage
management, it should use the program-supplied versions.
Library classes must take a consistent approach to providing
static initialization (e.g. cin, cout, cerr). Currently, the
order of initialization between thranslation units is
undefined. Providing means for explicit initialization

Mized C/C++ Mar 90

Extensions WG Issues

Name Space Mar 90

wchar t Mar 92
enums Nov 91
General Library WG Issues

Conformance Mar 90

Typedefs Mar 90
Reentrant Mar 90
Design Nov 90
Spec. Nov 91

90-0052,0062

90-0052,0062

92-0047/N0124

91-0134/N0067

90-0052,0062

90-0052,0062

90-0052,0062

90-0109

91-0134/N0067

X3J16/92-0082, WG21/N0159
9/20/92

introduces additional mechanism, complexity, and
performance overhead.
[Proposal: 91-0143/N0076]
Need to define the interaction of C and C++ features,
including:

VO (stdio & iostreams)

signals & exceptions

longJjmp & exceptions

memory (malloc/new, free/delete)
Analysis: - 910011

Need to make library facilities available, if possible without
relying on preprocessor #include directives. Names
introduced should not conflict with names introduced from
other libraries. Rejected approaches include “funny” names
(e.g. special prefixes or naming conventions), conditional
compilation directives (#ifdef). Current approach relies on
nested classes — not viable for templates.

[Proposal: 92-0008/N0086]

[see also: 91-0041]

The type wchar_t should be made a distinct type for the
pruposes of overloading. C only requires that it be one of the
existing integral types, which is not sufficiently portable. for
C++

Proposal: 92-0047/N0124

Allw overloading/operations on enumerations as distinct
types. Currently, and operation on enums reverts to int.
Checking has to be done dynamically. Full classes are seen as
too inefficient and/or layout incompatible with ints.
Proposal: 91-0139/N0072

see also: 92-0070/N0070

Need to describe ways in which an implementation of the
library can extend the classes as specified. For example, it
should be possible to add private members. Other reasonable
additions: defaulted extra arguments, private base classes.
Questionable: using virtual derivation, making specified
functions virtual if they are not specified that way.

Use of typedefs improve readibility (e.g. for new-handler
function type), but intrude on programs’ namespace.

[But see 91-0047, p. 2] -

Non-reentrant code hinders the ability to prove the standard
library in multi-threaded environments. Should the library
be required to be reentrant? Apparently breaks the C library.
[see also: 92-0082/N0159]

Need to document Rationale for why the library is not a
Smalltalk-like hierarchy.

[see also 91-0020]

All funetions and member functions specified in the C++
library should have exception-specifications to document what
exceptions they might throw. Issue: since a conforming
implementation might use dynamic storage to implement
these functions, any funetion may throw an out-of-storage

139

Spec. Nov 91

Terms Jul 92

91-0134/N0067

92-0082/N0159

17.1 Language Support Issues

Design Jul 92

Design Jul 92

17.2 Strings Issues

Design Nov 90
NLS Nov 90
Locales Mar 92
NLS Jul 92
Locales Jul 92
Spec. Jul 92

173 Input/Output Issues

Issues List Mar 91
Issues List Nov 91
Content Nov 91

140

92-0082/N0159

92-0082/N0159

90-0109
90-0109

92-0042/N0119

92-0082/N0159

92-0082/N0159
92-0082/N0159

91-0028
91-0134/N0067

”

X3J16/92-0082, WG21/N0159
9/20/92

exception

[see 92-0042/N0019].

The standard should be precise, using exact type definitions.
Leaving “types” unspecified is too vague. [but see iostreams
for backward compatibility]

Need to define terms used in the standard, such as “reserved”
and “region of storage,” and “C-style struct.” (?1)

An allocation request of 0 is always supposed to return a
“unique address.” Should it simply be defined that

new(0) == new (1) ?

Should the signature of the new-handler function be changed
from void (*)() to int (*)() ? This would break all
existing implementations.

Appropriate use of inheritance and/or templates in string
class design. Simpler is better.
Need to provide strings of National Language Set characters
(i.e. wchar_t).
[see also: 91-0027]
Different kinds of comparisons for different kinds of strings:
1) fast, “raw” byte comparisons
2) execution character set collating order
3) fully locale-sensitive
Need to consider locale-neutral operations and locale-sensitive
operations separately (might be able to add one to the other
through an appropriate use of inheritance).
Should NULSs (ASCII 0x00) be allowed anywhere in strings?
Is the additional generality worth the complexity and
performance degradation?
Should strings depend on the global locale setting, or should
they each have their own locale state?
Exceptions should be listed in exception-specifications, not
comments. The “Exceptions” paragraph of each function
should document the conditions under which the exception
may be thrown, not simply list the exception name.

..~

UNIX-specific items

Issues identified: .

1) national language set character data streams
2) file open modes, newline translation, etec.

3) wide character support

4) interaction with other standards (e.g. ASN.1)
5) names of headers (existing C++)

6) streampos, streamoff “types”

7) exceptions thrown by streambuf

8) mode flag “types” (enums and or-ing)

9) name space

10) I/O support for strings, wstrings

11) stdio/streams interaction

String stream

10

Design

Design
Spec.
Locale

Mar 92

Jul 92
Jul 92
Jul 92

174 CLibrary Issues

Final
Content

Mar 92
Sep 91

17.5 Containers Issues

Design

Jul 92

92-0039/N0116

”
44
92-0082/N0159

X3J16/92-0082, WG21/N0159
9/20/92

[see also: 92-0080/N0157]

The treatment of wehar_t and multi-byte encodings are
separate, but related, issues. The basic question is where to
provide support. wchar_t at streams interface, multi- in
external sources/sinks. Where to put encode/decode logic:
streams or streambufs?

Has implications for seeking, streampos type descriptions.
Might just throw an exception on an attempt to seek to an
illegal position.

Copy constructors

Use of exception-specifications.

Should streams depend on the global locale setting, or should
they each have their own locale state.

Suggested resolution: have their own state default to “unset.”
When “unset,” refer to global state, when “set,” use own state.

92-0024R1/N0101 Vote: APPROVED
91-0129/N0062 Request to review MSE addendum to ISO C.

The addendum is available as 92-0087/N0087.
[see also: 92--0035/N0112, 92-0036/N0113]

92-0082/N0159 Provide operator|] for dynarrays

11
141

B. Pending Items

This appendix lists issues which have been raised as possible work items for the Library working group.

However, they are not being pursued at this time. The purpose of this appendix is to retain these items until
they can be explicitly considered.

Content

Content

Content

Content

Content

Content

Content

Content

Content

Content

Content

142

Mar 90 90-0052

Mar 90 90-0062

Nov 91

Nov 91

Nov 91

Nov 91

Mar 92

Mar 92

Apr 92

Jul 92

Aug 92

91-0124/N0057

91-0134/N0067

91-0134/N0067

91-0133/N0066

92-0042/N0019

92-0042/N0019

92-0049/N0126

92-0076/N0153

92-0074/N0151

X3J16/92-0082, WG21/N0159
9/20/92

The standard C++ library should contain facilities for:

inter-process communication

network communication

parallel tasks

process table

relational database access
The standard C++ library should contain facilities for:

containers (lists, bags, sets, ...)

memory managers (zones)

garbage collection

locale (time zone, currency, language, ...)

date

time

currency

task

bit stream/bit map

math (complex, vectors, matrices, infinite precision
numbers, ...)
§17.1, Language Support, should provide default versions of
array new and array delete functions.
[Proposals: 92-0055/N0132]
The standard C++ library should contain facilities to replace
the C assert() macro-based facility. It should be based on
templates and exceptions.
[Proposal: 92-0030/N0107]
The standard C++ library should contain facilities for:

Common Language Independent Data Types

NCEG numeric types
The standard C++ library should include facilities for
concurrency, in the form of the extended language pC++.
{Analysis: 91-0130/N0063]
The C library facilities (specifically, math, string, and MSE
functions) should be made “more convenient” by using
function overloadding.
The standard C++ library should contain a complex type.
The standard C++ library should containe template classes
for sorting and searching.
The standard C++ library should contain a template function
renew, to simulate the C library function realloc (plus
invoke the appropriate constructors).)
The standard C++ library should define a standard
localedef format, based on the solution in P.J. Plauger’s
book, The Standard C Library.
The standard C++ library should contain mathematic array
abstractions, to allow implementations to optimize for
numeric-intensive environments.
§17.1, Language Support,should contain classes to support
extended run-time type information:

class Type_info;

class ExtTypelnfo;

class MemberInfo;

class DecliInfo;

12

X3J16/92-0082, WG21V/N0159
9/20/92

class MemberlIter:;
class Decllter;

13
143

C Decisions
This appendix records the decisio

X3J16/92-0082, WG21/N0159
9/20/92

ns and rationale for the decisions on which the Library working group

has reached consensus. The decisions are listed by topic, indicating the meeting at which they were made
and the document recording the decision.

General Library Decisions
Goals Mar 90
Criteria Mar 90
Criteria Nov 90
Criteria Mar 90
Design Mar 91
Design Mar 92
Design Nov9l
Formal Spec. Mar 90
Names Mar91
Design Mar 92

90-0052,0062

90-0052,0062

90-0109

90-0052,0062

91-0047

92-0042/N0019
91-0134/N0067
90-0052,0062

91-00030,0047

92-0042/N0019

17.1 Language Support Decisions

Content

Error Design

Design

144

Nov 91
Nov 91

Jul 92

91-0134/N0067
91-0134/N0067
92-0082/N0159

The library portion of the standard will describe interfaces,
not implementations. For example, the iostreams classes will
document protected members, since they represent an
interface to derived classes.

Contents of the standard library should be based on existing
practice, to the reatest extent feasible. There is a dilemma:
addition of templates and exceptions significantly influences
library design, and present C++ library practice does not use
them.

Classes proposed for the standard library should have been
implemented and used before accepted. How much use
constitutes an acceptable level of “prior art” has not been
defined.

Contents of the standard C++ library will not provide “C++
bindings” to other standards. That is the responsibility of the
respective standards involved.

The classes in the standard library should not be part of a
singly-rooted class hierarchy in the Smalltalk tradition. Their
design should emphasize static type checking and
mechanisms other than inheritance (such as templates) as
appropriate.

The container classes will emphasize CDT (concrete data
type) designs, using templates as appropriate.

The standard library will include predefined exceptions.

[see: 91-0116/N0049)

Elements of the standard library should use formal
specification techniques where applicable.

Decision (evolved over several proposals): use precise English
to document function actions and post conditions. Use C+4
(including exception-specifications) to specify the details of the
interface.

[see: 91-0036, 0038, 0046]

Header “file” names will have no trailing suffix. The mapping
of these names onto file names is, as ever, implementation -
dependent. -

C++ headers can #include others (necessary for iostreams).
C headers will retain C library rules of not allowing such
inclusion.

The standard library will provide predefined exceptions,
including a base class xmsgqg [see 91-0116/N0049].

The default new-handler should throw an out-of-memory
exception. :

(Issue Mar 92 92-0042/N0019]:

Should the default behavior of operator new() be changed

to always throw an exception if it cannot satisfy the memory
request?

14

Content

Jul 92

172 Strings Decisions

Design

Design

Design

Design

Design

Content

Nov 91

Mar 92

Mar 92

Mar 92

Jul 92

Jul 92

92-0082/N0159

91-0134/N0067

92-0042/N0019

92-0042/N0019

92-0042/N0019
92-0082/N0159

92-0082/N0159

173 Input/Output Decisions

Design

Static Init

Error Design

NLS
Error Design

Mar 90

Nov 90

Nov 90

Nov 91
Nov 91

90-0052,0062

90-0109

90-0109

91-0134/N0067
91-0134/N0067

X3J16/92-0082, WG21/N0159
9/20/92

Decision: allow returning null as an unspecified or undefined
behavior, for backward compatibility. '
The placement version of operator new() will be specified
and reserved (i.e. not replaceable, but overloadable).

The design of string class(e) will emphasize:

hiding details of storage management

providing existing operations conveniently

provide NLS support (wchar_t)
List of operations supported:

construction

assignment

concatenation

insert

search, replace

select

compare

convert

memory management (e.g. pre-reserve)
Until there is a resolution on lifetime of temporaries from the
Core WG, the string class(es) will provide no implicit
conversion to char*.
String operations need to be overloaded on char* (and
signed/unsigned chart), to prevent ambiguities, avoid
spurious temporaries, and prevent porting problems among
incompatible implementations.
Split the string class into several, and define the conversions
between them. Each string class will concentrate on just one
“kind of” string: raw memory, char strings, locale-sensitive
strings, and wehar_t strings.
A class text will provide a higher level of abstraction. It will
use one of the more basic strings, selecting among them “as
appropriate” to the locale (probably under explicit program
control).

The design for iostreams will use AT&T Release 2.0 as a base
line, minus the use of multiple inheritance, plus the use of
templates and exceptions (as appropriate).

Classes included:

ios, istream, ostream, strstream, fstream

manipulators

streambuf, strstreambuf, fstreambuf
Provide nested class ios: :init for explicit initialization.
Programs requiring iostream support in static consstructors
can creat an instance of this class, and subsequently use the
facilities of iostreams.
Provide both alternatives: stream state and exceptions.
Default is to use stream state (for backward compatibility),
explicit option to throw exceptions instead.
Provde stream inserters and extractors for wchar_t types.
Streambufs will have their own exceptions, distinct from
ios::failure. Streambufs will unconditionally throw
exceptions to report errors, streams will have the (program-

15
145

Spec. Mar 92
Others Jun 92
174 CLibrary Decisions
Mized C/C++ Mar 92
Inclusion Nov 9l
Design Nov 9l
Names Nov 90
17.5 Containers Decisions
Content Jul 90
Content Nov 91
Design Mar 92

146

92-0042/N0019
92-0059/N0136

92-0042/N0019

91-0134/N0067

91-0134/N0067

90-0109

90-0062
91-0134/N0067

92-0042/N0019

X3J16/92-0082, WG21/N0159
9/20/92

selectable) option of using error state or throwing/propagating
exceptions.

Tostreams will specify “types” vaguely, to allow conforming
implementations to use ints (existing practice) or classes.

pp- 7 & 8 list changes in Revision 3 and Revision 4.

Made the interaction of C and C++ features “undefined”,
including:

signals & exceptions

longjmp & exceptions

memory (malloc/new, free/delete)
Will address I/O (stdio & iostreams) in iostreams, by
describing the interaction of cin/stdin, cout/stdout,
cerr/stderr).

Alternatives (90-0109): by copy or by reference
Decision: include the relevant portions of the ISO C standard
by reference. Document with the appropriate document
number and revision identifier/date. Text in the C++
standard will define how the C++ version differs from the C
version of the same facility.
Options identified since Mar 90:

1. include “as is” (current practice)

2. minimal repairs to ensure type safety

3. revise to use available C++ features (e.g.
overloading)

4. complete rewrite/leave out for “more appropriate”
C++ solutions
Decision: (2) [See also 91-0047]
C library reserves names, C++ library reserves signatures.

The Library WG is not to consider additional classes until
proposals for 17.1-17.4 have been completed.

The standard C++ library will contain some container classes.
Initial volunteers identified for: bitset and array/vector.

[see: 91-0111/N0044]

The container class bits will focus on the concrete type, not
its use in anabstract set ADT. Work on a set classis
deferred.

16

